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amphiphile-solvent mixture in a lattice model 
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Abstract. The cluster partition function for a lattice model of an amphiphile-solvent mixture 
is derived for small amphiphile concentration using a piecewise linear approximation for the 
cluster statistics andin the absence of head-headinteractions. The partition function depends 
upon the lattice dimensionality, the lattice coordination number. the number of segments in 
the amphiphile chain, the temperature and the nature of the head-solvent and tail-solvent 
interactions. No prior assumptions are made about the presence or geometry of micelles. It 
is shown that for this partition function, with suitable choice of temperature and amphiphile 
concentration, the cluster size distribution shows a micellar phase for sufficiently solvophilic 
head-solvent interactions. 

The micelle size is limited by entropy alone and the dominant clusters are compact but 
not necessarily spherical. The model exhibits a critical micelle concentration which depends 
upon amphiphile chain length in a way which agrees with experiment. However, the model 
fails to give the correct temperature dependence of the critical micelle concentration. The 
micellar phase is also more limited, and the critical micelle concentration smaller, than is 
observed for real amphiphilic materials. 

1. Introduction 

The formation of micelles in dilute solutions of amphiphilic materials is well established 
experimentally but the theoretical understanding of the process is more restricted (e.g. 
Mittall984). In the majority of theoretical studies the micelles are explicitly introduced 
either by making assumptions about the form of the free energy or assuming a particular 
cluster geometry. 

In this paper we derive the cluster partition function for a lattice model of an 
amphiphile-solvent mixture without any prior assumptions about the presence or form 
of the micelles. The arguments are related to those used by Fisher (1967) in his droplet 
model of condensation. It is shown that the model exhibits a micellar phase and that the 
micelle size is limited by entropy alone. It is assumed (Wennerstrom 1979) that a micellar 
phase is associated with a cluster size distribution which shows both a minimum and a 
maximum. 

We consider a lattice model of an amphiphile and solvent mixture (Care 1987a, b). 
The model represents an incompressible solution of N A  amphiphile molecules and Ns 
solvent molecules. The molecules occupy the sites of a regular lattice with coordination 
number c. Each amphiphile is represented by a flexible chain of s adjacent sites with one 
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site on the end of the chain representing the solvophilic head and the remaining (s - 1) 
sites representing the flexible solvophobic tail. The remaining sites in the lattice each 
represent solvent molecule. There are no unoccupied sites. The total number of sites on 
the lattice, M ,  is equal to sNA + Ns.  The nearest-neighbour potential energy for fully 
flexible amphiphiles is given by 

U I k T =  b’(nn + Y ~ H S  + v ~ H H )  (1) 

where aHS, nTS, n H H  are the total number of head-solvent, tail-solvent and head-head 
bonds. The parameter @ is the ratio of the tail-solvent bond energy to k T ,  y the ratio of 
the head-solvent bond energy to the tail-solvent bond energy and q the ratio of the 
head-head bond energy to the tail-solvent bond energy. Care (1987a) showed that the 
lattice imposes constraints on the number of each type of possible bond and that for 
nearest neighbour interactions there are only three independent bond parameters. 

In order to represent normal amphiphilic behaviour, the tail-solvent interaction is 
chosen to be solvophobic (/3 > 0) and the head-solvent interaction.is chosen to be 
solvophilic ( y  < 0 ) .  We also set q = 0 and hence ignore head-head interactions. 

2. The cluster partition function 

The grand partition function for the binary mixture may be written with standard 
notation (Hill 1960) as 

where ,pA and ps are the chemical potentials for the amphiphiles and the solvent respect- 
ively, and Q ( M ,  T ,  NA, N s )  is the canonical partition function for a two component 
system given by 

qA and qs being the non-configurational partition functions for the amphiphile molecules 
and solvent molecules, respectively. 

The number of lattice sites M is fixed and hence (2) may be rewritten in the form 

Z ( M ,  T ,  P A ,  P s )  = @(M, T, P A )  (4) 

where 

Here 0 is the grand partition function for a one-component system with NA objects on 
a lattice of M sites, each with chemical potential p i  = p A  - spS. Q ( M ,  T ,  N A )  is a 
canonical partition function for a one-component system with a definition analogous to 
that given in equation (3). 

The grand partition function of the form (5) may be expanded in terms of physical 
clusters (Hill 1956). At  low concentrations, near the critical micelle concentration, we 
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Figurel. (a) n-clusterwithn = 3; (b) ( x g )  
withx = 18 a n d p  = 20. 

-cluster 

may ignore cluster-cluster interactions and the mole fraction of monomers in clusters 
containing n monomers, X,, is given by 

X ,  = [nQ,(T>/(Qi(T))"lx; (6) 

Q,(T> = (4(T))" Z: E gn(P, ~ H S )  exP[-P(P - n H S > l  ~xP[-PPH~J.  

where Q,( T )  is the cluster partition function for n monomers 
P' "'HS 

(7)  
p = p  - n H S =  0 

In equation (7), g,(p, nHs) is the total number of n-clusters with p surface bonds and 
nHS head-solvent bonds. q( T )  is the non-configurational partition function for each 
monomer. 

A monomer is assumed to be connected to a cluster if it shares at least one nearest- 
neighbour bond with the cluster. In the following we describe a connected cluster of n 
monomers as an n-cluster and this occupies ns sites. We describe a connected cluster of 
x lattice sites with p surface bonds as an ( x ,  p)-cluster. These clusters are illustrated in 
figure 1. 

The minimum number of surface bonds on a n-cluster,p-, is related to the perimeter 
of the most compact n-cluster. We assume that in a lattice of dimensionality d this is of 
the form 

p = int(5d(ns)(d- l ) l d )  (8) 

where 

ij* = 2(41'2 

g3 = 4 1 ~ ( 3 / 4 ~ ) ~ / ~ .  

monomers are arranged linearly. This suggests 
The maximum number of surface bonds on an n-cluster, p',  is obtained when the 

p+  = (c - 2)ns + 1 + 6 (9) 
where for future convenience 6 = 1 or 0 in order to ensure @' + p - )  is even. 
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Figure 2. Full curve, exact form of In d,,,(p) for 

The maximum number of head solvent bonds on an n-cluster, nhs is given by 

nAs = M i n k ,  n(c - 1)). (10) 

The central problem is the determination of g , ( p ,  nHs). In order to make progress we 
write 

g n ( P 3  nHs) = d,s(p)c,(p,  nHs> (11) 
where d , ( p )  is the number of possible (ns,p)-clusters, and c,(p, nHs) is the number of 
ways of arranging n monomers on an (ns, p)-cluster to give nHS head-solvent bonds. 
From standard lattice statistics we identify d, , (p)  as a coefficient in the appropriate 
cluster perimeter polynomial (Sykes and Glen 1976) and note that the number of 
connected clusters of ns lattice sites, D,,, is given asymptotically by (Domb 1976) 

D,, = AA"/(ns)' (12) 
where A ,  8 and A are constants which are determined by the nature of the lattice and its 
dimensionality. It is evident that 

Unfortunately the d, , (p)  are only tabulated for small n and hence we make a piecewise 
linear approximation in equation (7) as follows 

lnd,,(p)= --x P<P - 
= a g + t g ( l - a ) ( p - p - ) / ( p +  - p - )  p - < p < p -  + ( p +  - p - ) / 2  

=ag+2g( l - a ) (p+  - p ) / ( p ' - p - )  p -  + ( p +  - p - ) / 2 < p s p +  
(14) 

P'P + 
-- - - x  

where g is determined by the condition (13). An approximate expression for g in terms 
of A ,  8 and A is given later in the. paper. cy is a free parameter in the range 0 < a < 1. 

The exact form of In d, , (p)  is known for small ns for some lattices (e.g., Sykes and 
Glen 1976) and it is reasonable to assume it will have a similar form for large ns. This is 
shown schematically in figure 2, together with the piecewise linear approximation for 
ln dr,s(P). 
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a is included in equation (14) in order to improve the fit of the piecewise linear 
approximation to the expected curve of In d,(p) and is typically set at 0.5. The results 
obtained below are not affected qualitatively by the choice of this parameter. An 
improved form for In d,,(p) can be obtained by a quadratic fit but this unfortunately 
makes the summation intractable. 

The combinatorial term c n ( p ,  nHs) may be estimated by assuming that the bonds 
within an n-cluster are independent. This approximation is similar in philosophy to 
the quasi-chemical approximation and ignores the connectivity of each amphiphile. 
Inclusion of this connectivity in an improved approximation would enhance the micellis- 
ation of the model by inhibiting large clusters in which amphiphile heads were unable 
to reach the surface. There are a total of nsc bonds associated with an n-cluster, of which 
n(c - 1) are head bonds. The term cn(p ,  nHs)  is then the product of the number of 
ways of arranging tiHs head-solvent bonds among p surface sites and the remaining 
(n(c  - 1) - nHs) head bonds among nsc - p internal bonds. Thus 

C n ( P ,  n H S >  = [p! / (nHS)! (p  - n H S ) ! l  

x (nsc - p ) ! / [ n ( c  - 1) - nHs]![nsc - p - n(c - I )  + nHS!. (15) 
We use Stirling's approximation and the assumption that the important clusters have 
many more internal bonds than surface bonds to rewrite (15) as 

c , ~ ( p ,  nHs) = [p! / (nHs)!@ - nHS)!][sc/(c - l ) ]n (C- l ) -nHS ,  (16) 

If we substitute equations (ll), (14) and (16) into equation (7) and rearrange, we find 
that the cluster partition function is given by 

P +  

p = ( p  + + p  - ) /2+  1 

x [exp(-p - 2g(1 - a ) ) ] p  
P +  - P -  

We can perform these summations by noting the following results 
M i n ( n . p )  

.=o s!(p - s)! 

where n and p are positjve integers, Z, = ( a ,  b )  is the incomplete beta function (e.g. 
Abramowitz and Stegun 1965) and H ( x )  is the Heaviside step function. We define 

b 

q(t, z ,  a ,  b ,  n )  = c t P ( 1  - H(p  - n - t)Z,(n + 1 , p  - n ) )  (19) 
p = a  

where 0 s z s 1, --x < t < mand n < b. 
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Using results in appendix 1 it can be shown that 

q(t,z,a,b,n) =- + tn  + (1 - z n  + ) + s( t,z ,n + 2,b ,n) n a a  

n=a-1  

n<a-1 

n + l  t 

(1-t) 
- p + l  - ( 1 - z + 1 )  + s( t ,  z , n + 2,  b , n)  

= s(t ,  2, a ,  b, n )  

(20) 
where 

s(t ,  Z ,  U ,  b ,  n )  = [ l / ( l  - t)][{zt/[l - t(1 - ~)]}"+~[f , ( , - , , (b  - IZ, II. + 2)  

- f t p z ) ( U  - n - 1, n + 2 ) ]  

+ t a i , - , (a  - n - I ,  n + 2 )  - t b + l i l - z ( b  - n ,  n + 2)l. 
I 

(21) 
1, = ( p ,  q )  is the extended incomplete beta function defined in appendix 1. 

Using results ( 7 )  to (21) we may finally write the cluster partition function as 

(22) 

The termsp' andp-  are defined in equations (8) and (9) and it can be shown to a good 
approximation that 
g = ln D, - ln[(Di$'-")/(Pt-P-) + l),/(D$'-")/(P+-P-) - I)] (23) 

where D,, is defined by equation (12). 

3. Results 

The expression (22) is plotted in figures 3 to 6 for some parameters chosen to illustrate 
the behaviour of X ,  in the region where the model exhibits micellar behaviour. It is 
anticipated that each chain segment in the model may be taken to represent several 
repeat units in real amphiphilic materials. The range of micellar behaviour within the 
model is more limited than for real amphiphilic materials with the critical micelle 
concentration (CMC) having a very small value, particularly for longer chain lengths. 
This latter effect arises because for long chains the effect of the single head segment 
becomes less important. A similar effect was noted in the quasi-chemical analysis of this 
model (Care 1987a). It is hoped that the inclusion of a more realistic potential in future 
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Figure 3. Variation with n of mole fraction of monomers in clusters of size n ,  X , .  Numbers 
of segments, s = 4. Mole fraction of monomers, X ,  = 2.58 x lo-''. Reduced temperature 
p-' = 0.18. Dimensions, d = 3. Co-ordination number, c = 6. cr = 0.5. Micellar behaviour 
only occurs in curves E and F. Curve A, y = 1.0; curve B,  y = 0.5; curve C,  y = 0,O; curve 
D , y =  - 0.1; curve E, y = -0.2; curve F, y = -1.0. 

work may improve the correspondence between the CMC predicted by the model and 
the experimentally observed CMC. 

For all figures, the values chosen for the parameters in D,,, were A =: 1, 8 = 1 and 
A = 4. It should be noted that plots of the expression (22) show slight irregularities which 
arise because of the discrete nature o f p -  as defined in equation (8). The results presented 
in the figures show a value for X,, which is obtained by using (22) to interpolate between 
two integer values of p - ,  and effectively set p -  = l&(ns)(d-')/d rather than 
int( &,(ns)(d- l ) ld) .  

When interpreting the figures it should be noted that the system undergoes a normal 
phase separation at low temperature if Xl exceeds a value Xcond, for which an expression 
is derived in appendix 2. 

In figure 3 it can be seen that normal phase separation occurs until y becomes 
sufficiently negative. For the temperature and chain length in figure 3, the value of y at 
which micelles appear lies in the range -0.1 > y > -0.2, It can be seen that for small y 
a cluster peak occurs around n = 14. This corresponds to the smallest cluster size for 
which it is possible to have the perimeter entirely composed of head-solvent bonds. 
Future changes to the model will involve improving the approximation for c,,(p, nHs) to 
properly allow for surface texture. However it should be noted that the clusters with 
minimum perimeter are those which dominate the results in the micellar region. lt can 
also be seen that the effect of the solvophobic head-solvent interaction saturates when 

Figure 4 shows how the cluster concentration varies with moncmer concentration. 
It can be seen that at some monomer concentration, X I ,  the concentration of monomers 
in clusters of size n is equal to X1. This value of X I  may be identified approximately with 
the critical micelle concentration. It is important to note that as X I  increases towards 

y s  -p. 
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Figure 4. As in figure 3, except for the following: number of segments, s = 4.  Head-solvent 
interaction y = - 1. Reduced temperature p- ' = 0.18. Dimensions, d = 3. Coordination 
number, c = 6. (Y = 0.5. Xcond = 5.27 x (curve C). Curve A, XI = 2.58 x IO-"; curve 
B , X ,  = 1.03 x 10-'5;curveC,X, = 5.27 x 10-'6;curveD,X, = 2.58 x l0-l6;curveE.XI = 

1.03 x curve F, XI = 5.16 x lo-". 

&,,,,d, the total amphiphile mole fraction, X A  increases much more rapidly. XA is given 
by 

z 

X A  = 2 X,. (24) 
U =  1 

A detailed analysis would require evaluation of the summation in equation (24). How- 
ever, from the peak value of X, for X I  = &ond it can be estimated that the micellar phase 
shown in figure 4 is stable for at least four orders of magnitude of XA. Although this 
range is less than real micellar systems it still represents a significant region of the phase 
diagram. 

Figure 5 shows that the dependence of the critical micelle concentration on chain 
length is similar to that observed experimentally (Tanford 1980). However the tem- 
perature dependence of the CMC in the model (figure 6) is much stronger than that 
observed experimentally (Tanford 1980, Mittal and Lindman 1984). 

4. Conclusion 

In conclusion we have used a piecewise linear approximation for the cluster statistics to 
derive a closed analytic expression for the cluster partition function in a lattice model 
of an amphiphile-solvent mixture. The partition function depends upon the lattice 
dimensionality, the lattice coordination number, the number of segments in the amphi- 
phile chain, the temperature and the nature of the head-solvent and tail-solvent inter- 
actions. Depending upon the choice of head-solvent interaction, the partition function 
leads to either normal phase separation or micellar behaviour. In the micellar phase the 
size of the micelles appears to be limited by entropy alone. 
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Figure 5. Variation of critical micelle con- 
centration (CMC) with number of seg- 
ments, s. Head-solvent interaction, y = 
-1. Reduced temperature, p-' = 0.18. 
Dimensions, d = 3. Coordination num- 
ber. c = 6. N = 0.5 

Figure 6. Variation of CMC with p (inverse 
reduced temperature). Head-solvent 
interaction, y = - 1. Number of segments, 
s = 4.  Dimensions, d = 3. Coordination 
number c = 6. a = 0.5. 

Hence for a suitable range of concentrations and temperature, the monomers aggre- 
gate into clusters ordered in such a way as to minimise tail-solvent interactions, but so 
as to maximise head-solvent interactions. However entropy is maximised if many small 
clusters are formed rather than a limited number of large clusters. The precise cluster 
size is consequently determined by the competition between these two opposing effects. 

The results also show that head-head repulsions are not essential in order to form a 
micellar phase. The clusters which make the greatest contribution to the partition 
function are those which are compact but not necessarily spherical. The model gives the 
correct chain length dependence for the CMC but fails to give the correct temperature 
dependence for the CMC. 
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The current work does not correctly predict the surface texture of the clusters. It is 
possible to define the surface texture of a cluster, t, as 

t = number of head-solvent bonds/cluster perimeter. (25) 

t will be in the range 0 < z < tmax, where zmaX must be less than one from geometrical 
considerations. Assumptions made in deriving c n ( p ,  nHS) in equation (15) allow values 
of t = 1 in the work presented in this paper. In future work it is hoped to modify the 
form of c,(p, nHs) in order to improve the way in which the model deals with surface 
texture and also to take account of the chain length more carefully. 

It is also intended to evaluate the summation (24) and hence determine X,(X,, T )  
rather than X,(X,, T )  as has been determined in this paper. This will allow comparison 
with the theory of Israelachvili et a1 (1976) and may also allow the identification of other 
liquid-crystal phases within the model. The work would be further improved by the 
inclusion of head-head interactions and longer range interactions, but these changes 
may render the model intractable. Monte Carlo simulations of the lattice model are 
currently being undertaken in order to test the validity of the approximations used in 
this paper. 

Appendix 1 

We wish to evaluate summations of the form 
b 

R(t, 2, U ,  b ,  n)  = tPZz(n + 1,p - n)  
p = a  

(A1.l)  

(A1.2) 

where a, b ,  n are positive integers with b 2 a > (n  + 1), 0 S z s 1, --CO < t < -CO and 
Zz(p, q )  is the incomplete beta function (Abramowitz and Stegun 1965) defined by 

Here B ( p ,  q )  is the beta function. 
We differentiate equation (Al . l )  with respect to z ,  finding after some manipulation 

that 

dR/dz = [ ~ " t " + l / ( l  - u)"+']T(u, U ,  b ,  n)  u = t ( l - z )  (A1.4) 

where 
b 

U p - n - l  (1 - U ) " + * .  
P! 

p = a  n!(p - n - l ) !  
(A1.5) 

The expression (A1.3) is valid for --CO < t < -CO and 0 S z S 1 except at the point U = 1. 
T(u ,  a ,  b ,  n )  has been chosen in such a way that only two terms remain in the summation 
when it is differentiated with respect to U .  An analogous technique is suggested by 
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Pfeiffer and Schum (1987) for evaluating summations involving the incomplete beta 
function. Hence we find 

dT/du = [a!/n!(a - n - 2)!](1 - u ) " + ~ u ~ - " - ~  

- [ ( b  + l)!/n!(b - n - 1)!](1 - u ) " + ~ u ~ - ~ - ~ .  (A1.6) 

We define the 'extended' incomplete beta function, jz(p,  4 )  as 

(A1.7) 

where --x < z < -x andp,  4 are positive integers. 

function. We may now integrate equation (A1.6) to find 

T(u,  a, b ,  n) = (n + l)[f,(a - n - 1, n + 2) - f,(b - n, n + 2)J 

Hence, from equation (A1.4) 

dR/dz = [ l / ( l  - t)](dG/dz)[l*,(a - n - 1, n + 2) - f , (b  - n, n + 2)] 

We note that in the range 0 < z < 1 this function is simply the incomplete beta 

(A1.8) 

(A1.9) 

(A1.10) 

Integrating by parts we find 

R(t,z,a,b,n) = [I/(I - t)][{zt/[l - t( l  - z ) ] ) ~ + '  [i,,,-,, (a-n - 1,n +2) 

- f l ( l - z ) ( b  - n, n + 2)] + taZz(n + 2, a - n - 1) - tb+lZz(n + 2, b - n)]. ( A l . l l )  

In obtaining equation ( A l , l l ) ,  the integration around the point U = 1 is achieved by 
taking suitable limits. 

The extended incomplete beta function obeys relations which are analogous to those 
for the incomplete beta function (Abramowitz and Stegun 1965). Hence it can be shown 
that 

fZ(P> 4 )  = 1 - f l - z (P>  4)  

U P ?  4 )  = [ M P  + 4)1[Pfz(P + 1 ,4 )  + 4fz(P, 4 + 111 

fz(P, 4 )  = (1 - Z)f,(P, 4 - 1) + ZfZ(P - 1 > 4 )  

L(P ,  4 )  = [ r ( p  + q ) j r ( p  + 1)r(q)i zp(1 - 2)q-l + f ,(p + 1 , q  - 1) 

fz(P2 4 )  = [ r (P  + 4 m P  + 1)l-(q)l zP(l  - Z l 9  + U P  + 1 > 4 )  

(A1.12) 

(A1.13) 

(A1.14) 

(Al .  15) 

(Al .  16) 

fz (p ,  1) = zp (A1.17) 

In equations (A1.12) to (A1.18) p and 4 are assumed to be positive integers and except 
for equation (A1.18), z is assumed to lie in the range --x. < z < -x.. 
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In the summation R ,  defined in equation (Al.  l), it is assumed that a > n + 1 because 
the result (A1.ll) is not well defined when a = n + 1. However, the summation may be 
extended to include a = n + 1 by noting that 

(Al.  19) 

where we have used a form of the result (Al.  17). The second term on the right of (Al.  19) 
may be expanded using result (Al.  11). 

The extension of the incomplete beta .function allows the summation defined in 
equations (Al . l )  and (A1.2) to be found in integral form. For large a and b this result 
is more readily amenable to numerical evaluation than the original summation. 

R(t, z ,  n + 1, b,  n )  = (tz)"+l + R(t, z ,  n + 2, b ,  n )  

Appendix 2 

The asymptotic form of Q,(T) can be found most readily from equation (17). After 
some manipulation it can be shown that 

lim (x,) = n e x p ( - ~ n ~ / ~ )  y n  (A2.1) 
n-+x 

where 

/sc = e-P ~ 2 ( 1 - ~ ) / ( ~ - 2 )  = (c - 1) eP(1-Y) 

The equation (A2.1) is valid provided I u I e 1, U + 1 and uu > 1. These conditions 
are satisfied for the cases of interest in this paper. Hence the system will exhibit phase 
separation if X I  exceeds X c o n d  where X c o n d  is given by 

(A2.2) 

The arguments of Israelachvili suggest that a system with X,, given by an equation of the 
form (A2.1) will make a transition from a micellar phase (if it exists) to infinite bilayers, 
when XI exceeds X c o n d .  

X c o n d  = Ql(T)/A"'[U(l + U)]"-'  
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